Derivation of the Aronsson Equation for C Hamiltonians

نویسندگان

  • MICHAEL G. CRANDALL
  • CHANGYOU WANG
  • YIFENG YU
چکیده

It is proved herein that any absolute minimizer u for a suitable Hamiltonian H ∈ C(R × R× U) is a viscosity solution of the Aronsson equation: Hp(Du, u, x) · (H(Du, u, x))x = 0 in U. The primary advance is to weaken the assumption that H ∈ C, used by previous authors, to the natural condition that H ∈ C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...

متن کامل

The Aronsson equation for absolute minimizers of L ∞ - functionals associated with vector fields satisfying Hörmander ’ s condition

Given a Carnot-Carathéodory metric space (R, dcc) generated by vector fields {Xi} m i=1 satisfying Hörmander’s condition, we prove in theorem A that any absolute minimizer u ∈ W 1,∞ cc (Ω) to F (v,Ω) = supx∈Ω f(x,Xv(x)) is a viscosity solution to the Aronsson equation (1.6), under suitable conditions on f . In particular, any AMLE is a viscosity solution to the subelliptic ∞-Laplacian equation ...

متن کامل

Derivation of Equation of Motion for the Pillow-Shape Seismic Base Isolation System

Rolling-based seismic isolation systems, in which rollers of circular or non-circular section are used, are less expensive and easier to manufacture. However, this type of isolation suffers from either lack of restoring or re-centering capability, or weakness against uplift forces. To resolve the first shortcoming the use of elliptical as well as pillow-shape rolling parts has been suggested, a...

متن کامل

Fractional Heisenberg Equation

Fractional derivative can be defined as a fractional power of derivative. The commutator (i/h̄)[H, . ], which is used in the Heisenberg equation, is a derivation on a set of observables. A derivation is a map that satisfies the Leibnitz rule. In this paper, we consider a fractional derivative on a set of quantum observables as a fractional power of the commutator (i/h̄)[H, . ]. As a result, we ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006